## **MATHEMATICS SPECIALIST**

## MAWA Year 12 Examination 2020

## **Calculator-assumed**

## **Marking Key**

© MAWA, 2020

#### Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or marking guide until the agreed release date stipulated in the purchasing agreement/licence.

# The release date for this exam and marking scheme is 12<sup>th</sup> June.

## (5 marks)

| If P represents the point $z$ and Q the point $2iz$ then the angle POQ is a right-and<br>If R denotes the point $(1+2i)z$ then OR is the diagonal of the quadrilateral; which<br>rectangle<br>The area of OPRQ is then the product of the lengths of the sides OP and OQ<br>Since $z = r \operatorname{cis} \theta$ the length of OP is just $r$<br>As $OQ = 2iz$ the length of OQ is $2r$ | gle<br>h is a |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Hence area of rectangle is $2r^2$                                                                                                                                                                                                                                                                                                                                                          |               |
| Mathematical behaviours                                                                                                                                                                                                                                                                                                                                                                    | Marks         |
| <ul> <li>remarks that the angle POQ is 90 degrees</li> </ul>                                                                                                                                                                                                                                                                                                                               | 1             |
| <ul> <li>realises that the parallelogram is actually a rectangle</li> </ul>                                                                                                                                                                                                                                                                                                                | 1             |
| <ul> <li>calculates the lengths of the sides of the rectangle</li> </ul>                                                                                                                                                                                                                                                                                                                   | 1+1           |
| <ul> <li>deduces the required area</li> </ul>                                                                                                                                                                                                                                                                                                                                              | 1             |

Solution

• deduces the required area

## **Question 10**

## (8 marks)

## Question 10(a)

## (2 marks)

| Solution                                                                                                                                                                                                                                                                                       |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Now $\overrightarrow{AB} = -5\mathbf{i} \cdot 10\mathbf{j}$ and $\overrightarrow{AC} = -5\mathbf{i} \cdot 2\mathbf{k}$ lie in $\mathcal{P}$<br>Thus $\mathbf{n} = \overrightarrow{AB} \times \overrightarrow{AC} = -20\mathbf{i} + 10\mathbf{j} \cdot 50\mathbf{k}$ is normal to $\mathcal{P}$ |        |
| Mathematical behaviours                                                                                                                                                                                                                                                                        | Marks  |
| <ul> <li>identifies two non-parallel vectors in <i>P</i></li> <li>calculates the cross product correctly</li> </ul>                                                                                                                                                                            | 1<br>1 |

## Question 10(b)

## (2 marks)

| Solution                                                                                                           |       |
|--------------------------------------------------------------------------------------------------------------------|-------|
| Vector equation <b>r.n=</b> c for $\mathcal{P}$ is $-20x+10y-50z = -20 \times 5 = -100$<br>i.e. $2x - y + 5z = 10$ |       |
| Mathematical behaviours                                                                                            | Marks |
| • Uses r.n=c                                                                                                       | 1     |
| evaluates constant correctly                                                                                       | 1     |

## Question 10(c)

## (3 marks)

| Solution                                                                                                        |       |
|-----------------------------------------------------------------------------------------------------------------|-------|
| Suppose that D has coordinates $(a,b,c)$                                                                        |       |
| Since $\overrightarrow{OD}$ is parallel to <b>n</b> , $(a,b,c) = t$ <b>n</b> for some scalar t                  |       |
| ie. $a = -20t$ , $b = 10t$ and $c = -50t$ (*)                                                                   |       |
| Since D lies on $P$ , $2a - b + 5c = -300t = 10$ (**)                                                           |       |
| Hence $t = -\frac{1}{30}$ and the co-ordinates of D are $(a, b, c) = (-20t, 10t, -50t) = \frac{1}{3}(2, -1, 5)$ |       |
| Mathematical behaviours                                                                                         | Marks |
| <ul> <li>obtains equations (*)</li> </ul>                                                                       | 1     |
| <ul> <li>obtains equation (**)</li> </ul>                                                                       | 1     |
| derives correct solution                                                                                        | 1     |

## Question 10(d)

(1 mark)

| Solution                                                                    |       |
|-----------------------------------------------------------------------------|-------|
| Distance OD= $\frac{1}{3}\sqrt{2^2 + 1^2 + 5^2} = \sqrt{10/3} \approx 1.83$ |       |
| Mathematical behaviours                                                     | Marks |
| obtains correct result                                                      | 1     |

(6 marks)



## Question 12(a)

(5 marks)

|                                                      | Solution                                                                                                    |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Solving $r_A(t) = r_B$<br>(2+3t) <b>i</b> + (t - 15) | (t') gives<br>$\mathbf{j} + (11t - 1)\mathbf{k} = 11\mathbf{i} + (3 - 3t')\mathbf{j} + (2 + 6t')\mathbf{k}$ |
| So 2 + 3 <i>t</i> = 11, (*)                          | t - 15 = 3 - 3t' (**) and $11t - 1 = 2 + 6t'$ (***)                                                         |
| So $t = 3$ and $t' = 5$                              | from (*) and (**)                                                                                           |
| Note that (***) is sat                               | isfied when $t = 3$ , and $t' = 5$ ,                                                                        |
| so the paths do inte                                 | rsect (at the point $C(11, -12, 32)$ .)                                                                     |

The objects do not collide because they pass through the point of intersection of their paths at different times

| Mathematical behaviours                                    | Marks |
|------------------------------------------------------------|-------|
| • attempts to solve $r_A(t) = r_B(t')$                     | 1     |
| <ul> <li>obtains equations (*), (**) and (***)</li> </ul>  | 1     |
| <ul> <li>shows that the paths intersect</li> </ul>         | 1     |
| <ul> <li>states that the objects do not collide</li> </ul> | 1     |
| gives a valid reason                                       | 1     |

## Question 12(b)

## (5 marks)

Solution  $r_A(t) - r_B(t)$ = (2+3t)i + (t-15)j + (11t-1)k - (11i + (3-3t)j + (2+6t)k) $= (3t - 9)\mathbf{i} + (4t - 12)\mathbf{j} + (5t - 3)\mathbf{k} \quad (*)$ So  $||\mathbf{r}_{A}(t) - \mathbf{r}_{B}(t)||^{2} = (3t - 9)^{2} + (4t - 12)^{2} + (5t - 3)^{2}$  $= (9 + 16 + 25)t^{2} - (54 + 96 + 30)t + (81 + 144 + 9)$  $= 50t^2 - 180t + 234$  (\*\*) This is minimized when  $t = \frac{180}{2 \times 50} = 1.8$ When t = 1.8 $r_A - r_B = -3.6i - 4.8j + 6k$ ; the minimum distance is  $\sqrt{(-3.6)^2 + (-4.8)^2 + 6^2} \approx 8.49 m$ Mathematical behaviours Marks 1 derives expression (\*) 1 obtains an expression for the square of distance between objects 1 simplifies to derive (\*\*) 1 evaluates *t* correctly 1 evaluates minimum distance correctly

(10 marks)

Question 13 (a)

(5 marks)

(4 marks)

| Solution                                                                                     |       |
|----------------------------------------------------------------------------------------------|-------|
| If $ z+1  = \sqrt{2}  z-i $ then with $z = x + iy$ have $ (x+1) + iy  = \sqrt{2}  x+i(y-1) $ |       |
| Hence $(x+1)^2 + y^2 = 2[x^2 + (y-1)^2]$                                                     |       |
| $\rightarrow x^2 + y^2 + 2x + 1 = 2x^2 + 2y^2 - 4y + 2$                                      |       |
| $\rightarrow x^{2} + y^{2} - 2x - 4y + 1 = (x - 1)^{2} + (y - 2)^{2} - 4 = 0$                |       |
| Hence $(x-1)^2 + (y-2)^2 = 2^2$ so is a circle centre (1,2) and of radius 2                  |       |
| Mathematical behaviours                                                                      | Marks |
| • expresses the equation in terms of x and y                                                 | 1     |
| <ul> <li>evaluates the modulus of both sides correctly</li> </ul>                            | 1     |
| simplifies the equation to the standard circle form                                          | 1     |
| determines the centre and radius of the circle                                               | 1+1   |

## Question 13 (b)

## Solution Im(z) $\rightarrow$ Re(z) -4 -2 6 2 4 6 -2 As circle has centre (1,2) and has radius 2, it touches the x-axis. Cuts the y axis where $(y-2)^2 = 3 \Longrightarrow y = 2 \pm \sqrt{3}$ Mathematical behaviours Marks shows circle in correct location with correct radius 1 • 1 indicates circle touches the horizontal axis • 1 shades the correct area • 1 identifies the points where the circle cuts the vertical axis •

(15 marks)

Question 14(a)

Solution

Since  $f(x) = \frac{x^2 + 4x - 10}{x - 2}$ , we can find the *x*-intercepts of f(x) by setting the numerator to zero. Using the quadratic formula gives the roots of f(x) = 0 as x = -5.74 and x = 1.74 (2 dp)  $f'(x) = \frac{(x-2)(2x+4) - (x^2+4x-10)}{(x-2)^2} = \frac{x^2 - 4x + 2}{(x-2)^2}.$ The *y*-intercept is given by putting x = 0 and f(0) = 5Solving f'(x) = 0 gives x = 0.59 and x = 3.41. Point x = 2 is also a critical point Since f(0.59) = 5.17 and f(3.41) = 10.83 then (0.59,5.17) and (3.41,10.83) are critical points. Mathematical behaviours Marks determines the two roots of f(x) = 01 ٠ 1 locates the *y*-intercept 1 differentiates correctly using the quotient rule • 1 identifies x = 2 as a critical point 1 solves correctly f'(x) = 01

evaluates f(0.59) and f(3.41) for the two critical points

## Question 14(b)

## (3 marks)

| Solution                                                                                     |                            |
|----------------------------------------------------------------------------------------------|----------------------------|
| Since                                                                                        |                            |
| $f(x) = \frac{(x-2)(x+6)+2}{(x-2)} = x+6+\frac{2}{x-2}$ it is clear that $f(x) \to x+6$ as x | $\rightarrow \pm \infty$ . |
| Mathematical behaviours                                                                      | Marks                      |
| conducts the long division                                                                   | 1                          |
| • derives the form of the function for large $ x $                                           | 1                          |
| • deduces the correct limiting behaviour as $x \rightarrow \pm \infty$                       | 1                          |

## Question 14(c)

| Solution                                   |       |
|--------------------------------------------|-------|
| The line $x = 2$ is the vertical asymptote |       |
| Mathematical behaviours                    | Marks |
| identifies the vertical asymptote          | 1     |

#### (1 mark)

## Question 14(d)

(5 marks)



1+1+1

| Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| First we find an equation of the plane containing triangle ABC.<br>Now $\overrightarrow{BC} = (4,0,0)$ and $\overrightarrow{BA} = (2,3,6)$ so that $\overrightarrow{BC} \times \overrightarrow{BA} = (4,0,0) \times (2,3,6) = (0,-24)$<br>Hence normal to the plane is parallel to $(0,2,-1)$ and equation of the plane is $2y$ some $d$<br>Substituting the coordinates of A (or B or C) gives $d = 7$ .<br>Since M lies in this plane $2y - z = 7$ . (*) | 4,12)<br>− <i>z</i> = <i>d</i> for |
| Now $\overrightarrow{BM} = (x-5, y-4, z-1)$ is perpendicular to $\overrightarrow{AC} = (2, -3, -6)$<br>Hence $2(x-5)-3(y-4)-6(z-1)=0 \rightarrow 2x-3y-6z=-8$ (**)                                                                                                                                                                                                                                                                                         |                                    |
| Also $\overrightarrow{AM} = (x-7, y-7, z-7)$ is perpendicular to $\overrightarrow{BC} = (4, 0, 0)$ so                                                                                                                                                                                                                                                                                                                                                      |                                    |
| $4(x-7) = 0 \implies x = 7$<br>Now (**) becomes $-3y-6z = -22 \implies y+2z = \frac{22}{3}  (***)$                                                                                                                                                                                                                                                                                                                                                         |                                    |
| Solving (*) and (***) gives $y + 4y - 14 = \frac{22}{3}$ or $y = \frac{64}{15}$ .<br>Then $z = 2y - 7 = \frac{23}{15}$ .<br>Hence co-ordinates of M are $\left(7, \frac{64}{15}, \frac{23}{15}\right)$ .                                                                                                                                                                                                                                                   |                                    |
| Mathematical behaviours                                                                                                                                                                                                                                                                                                                                                                                                                                    | Marks                              |
| <ul> <li>recognises that M lies in the plane containing triangle ABC</li> <li>obtains a normal to this plane</li> <li>derives equation (*)</li> </ul>                                                                                                                                                                                                                                                                                                      | 1<br>1<br>1                        |
| <ul> <li>uses the orthogonality of the altitudes and the sides twice</li> </ul>                                                                                                                                                                                                                                                                                                                                                                            | 1+1                                |

• solves for *x*, *y* and *z* correctly

## Question 16(a)

| Solution                                                                                                                                                                                                                                          |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| We know that $z = cis(i\psi) = \cos\psi + i\sin\psi$ so that<br>$cis(-i\psi) = \cos(-\psi) + i\sin(-\psi) = \cos\psi - i\sin\psi$<br>Then<br>$z - z^{-1} = cis(i\psi) - cis(-i\psi) = \cos\psi + i\sin\psi - [\cos\psi - i\sin\psi] = 2i\sin\psi$ | n <i>W</i> |
| Mathematical behaviours                                                                                                                                                                                                                           | Marks      |
| • writes down appropriate form for $cis(-i\psi)$                                                                                                                                                                                                  | 1          |
| deduces the requisite result                                                                                                                                                                                                                      | 1          |

## Question 16(b)

## (3 marks)

(4 marks)

| Solution                                                       |       |
|----------------------------------------------------------------|-------|
| Now by de Moivre's theorem we have that                        |       |
| $z^3 = \cos 3\psi + i \sin 3\psi$                              |       |
| Similarly                                                      |       |
| $z^{-3} = \cos 3\psi - i \sin 3\psi$                           |       |
| so that                                                        |       |
| $z^3 - z^{-3} = 2i\sin 3\psi$                                  |       |
| Mathematical behaviours                                        | Marks |
| • uses de Moivre's theorem to get correct expression for $z^3$ | 1     |
| • obtains corresponding result for $z^{-3}$                    | 1     |
| deduces the stated result                                      | 1     |

## Question 16(c)

Hence

so

or

## Solution Now we have that $(z-z^{-1})^3 = z^3 - 3z + 3z^{-1} - z^{-3} = (z^3 - z^{-3}) - 3(z-z^{-1})$ $(2i\sin\psi)^3 = (2i\sin 3\psi) - 3(2i\sin\psi)$ $-8i\sin^3\psi = 2i\sin 3\psi - 6i\sin\psi \rightarrow -4\sin^3\psi = \sin 3\psi - 3\sin\psi$ $\sin 3\psi = 3\sin \psi - 4\sin^3 \psi$

| Mathematical behaviours                                                  | Marks              |
|--------------------------------------------------------------------------|--------------------|
| <ul> <li>expands the binomial expression correctly</li> </ul>            | 1                  |
| <ul> <li>groups the terms on the right hand side to allow use</li> </ul> | e of (a) and (b) 1 |
| <ul> <li>substitutes the results of (a) and (b)</li> </ul>               | 1                  |
| <ul> <li>rearranges to obtain the required result</li> </ul>             | 1                  |
|                                                                          |                    |

## (9 marks)

(2 marks)

## (12 marks)

(2 marks)

| Solution                                                                                                                                                          |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| As $x(t) = 3\sin \alpha t$ and $y = 4\cos \alpha t$ then using                                                                                                    |       |
| $\sin^2 \alpha t + \cos^2 \alpha t = 1 \implies \left(\frac{x}{3}\right)^2 + \left(\frac{y}{4}\right)^2 = 1$ or, equivalently, $\frac{x^2}{9} + \frac{y^2}{16} =$ | 1     |
| Mathematical behaviours                                                                                                                                           | Marks |
| • obtains the formulae for <i>x</i> and <i>y</i>                                                                                                                  | 1     |
| eliminates the time correctly                                                                                                                                     | 1     |

#### Question 17(b)

| Solution                                       |       |
|------------------------------------------------|-------|
| The path is an ellipse                         |       |
| Mathematical behaviours                        | Marks |
| <ul> <li>states the shape correctly</li> </ul> | 1     |

## Question 17(c)

#### Solution Velocity $\mathbf{v}(t) = 3\alpha \cos \alpha t \mathbf{i} - 4\alpha \sin \alpha t \mathbf{j}$ Acceleration $\mathbf{a}(t) = -3\alpha^2 \sin \alpha t \mathbf{i} - 4\alpha^2 \cos \alpha t \mathbf{j}$ Mathematical behaviours Marks • states the correct expression for the velocity 1 • states the correct expression for the acceleration 1

## Question 17(d)

### (2 marks)

|                                                                                     | . ,          |
|-------------------------------------------------------------------------------------|--------------|
| Solution                                                                            |              |
| When $t = 0$ have $\mathbf{r}(0) = 4$ j and the velocity $\mathbf{v} = 3\alpha$ i.  |              |
| Thus, at the most northerly end of the path (when $y$ is greatest) then the velocit | ty is in the |
| positive i direction.                                                               |              |
| Hence the car moves in a clockwise direction around the path.                       |              |
| Mathematical behaviours                                                             | Marks        |
| draws the correct conclusion                                                        | 1            |
| <ul> <li>gives a valid reason for drawing the conclusion</li> </ul>                 | 1            |
|                                                                                     |              |

## (1 mark)

## (2 marks)

## Question 17(a)

## Question 17(e)

| Solution                                                               |       |
|------------------------------------------------------------------------|-------|
| If the car completes a circuit in 74 seconds then                      |       |
| $74\alpha = 2\pi \Longrightarrow \alpha = 0.0849$                      |       |
| correct to 3 s.f.                                                      |       |
| Mathematical behaviours                                                | Marks |
| • uses $74\alpha = 2\pi$                                               | 1     |
| <ul> <li>derives the correct value to the required accuracy</li> </ul> | 1     |

#### Question 17(f)

#### Solution Since $\mathbf{v}(t) = 3\alpha \cos \alpha t \mathbf{i} - 4\alpha \sin \alpha t \mathbf{j}$ then $v^2 = 9\alpha^2 \cos^2 \alpha t + 16\alpha^2 \sin^2 \alpha t = 9\alpha^2 + 7\alpha^2 \sin^2 \alpha t$ $\cos^2 \alpha t + \sin^2 \alpha t = 1$ . since Hence maximum value of $v^2$ occurs when $\sin^2 \alpha t = 1$ so then $v^2 = 16\alpha^2 \implies v = v_{\text{max}} = 4\alpha = 0.340$ Hence max speed is 34 cm per second approximately. Mathematical behaviours Marks 1 recognizes speed as the length of the velocity vector • 1 derives expression for the square of the speed • 1 obtains the correct answer •

#### (2 marks)

(3 marks)

## (9 marks)

## Question 18(a)



## (3 marks)

## Question 18(b)

## (3 marks)

| Solution                                                                               |       |
|----------------------------------------------------------------------------------------|-------|
| Now $f'(x) = A - \sin x$ so that for values x we have that $A - 1 \le f'(x) \le A + 1$ |       |
| The function is one-to-one if its derivative never changes sign                        |       |
| Hence the function is one-to-one if either $A \le -1$ or $A \ge 1$                     |       |
| Mathematical behaviours                                                                | Marks |
| we take the memory of the base to be a the device the                                  | 4     |
| notes the range of values taken by the derivative                                      | 1     |
| <ul> <li>states correctly the criterion for a 1-1 function</li> </ul>                  | 1     |
| obtains the correct ranges for A                                                       | 1     |

## Question 18(c)

## (3 marks)

| Solution                                                                                                                                          |             |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| To evaluate $f^{-1}(4)$ we need to solve the equation $4 = \cos x + 3x$ .                                                                         |             |
| This has the solution $x \simeq 1.22$                                                                                                             |             |
| Mathematical behaviours                                                                                                                           | Marks       |
| <ul> <li>writes down the equation to be solved</li> <li>uses calculator to determine root</li> <li>quotes answer to specified accuracy</li> </ul> | 1<br>1<br>1 |

## **Question 19**

## (9 marks)

## Question 19(a)

(3 marks)

|               | Solution                                                                          |
|---------------|-----------------------------------------------------------------------------------|
| lf            |                                                                                   |
|               | $P(z) = z^4 + 4z^3 + 9z^2 + 16z + 20$                                             |
| Then          | $P(2i) = (2i)^4 + 4(2i)^3 + 9(2i)^2 + 16(2i) + 20 = 16 - 32i - 36 + 32i + 20 = 0$ |
| Hence one roo | ot of $P(z) = 0$ is $z = 2i$ as required                                          |

| Mathematical behaviours                                              | Marks |
|----------------------------------------------------------------------|-------|
| • substitutes $z = 2i$ in equation for $P(z)$                        | 1     |
| • simplifies real parts and imaginary parts to show that $P(2i) = 0$ | 1+1   |

Question 19(b)

Solution

As P(z) has real-valued coefficients, the roots of P(z) = 0 come in complex conjugate pairs. Then since z = 2i is a solution then so is z = -2i and hence  $z^2 + 4$  is a factor of P(z)By long division we have that  $P(z) = z^4 + 4z^3 + 9z^2 + 16z + 20 = (z^2 + 4)(z^2 + 4z + 5)$ Now  $z^2 + 4z + 5 = 0$  has complex-valued roots  $z = \frac{-4 \pm \sqrt{16 - 20}}{2} = -2 \pm i$ Hence the four roots of P(z) = 0 are  $z = \pm 2i$  and  $z = -2 \pm i$ Mathematical behaviours Marks states that roots of the equation come in complex conjugate pairs 1 • writes down the solution z = -2i1 deduces a quadratic factor of P(z)1 performs the long division to find the other quadratic factor 1 solves the quadratic for the other two roots 1 states the four roots of P(z) = 01